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Multiple myeloma (MM) is considered an incurable B cell malignancy, although many patients can benefit
from high-dose therapy with autologous stem cell transplantation (ASCT) as a first-line treatment. In non-
Hodgkin lymphoma (NHL), ASCT is usually performed after relapse with curative intent. Disease progres-
sion is often associated with increased angiogenesis, in which endothelial progenitor cells (EPC) may have a
central role. Here, we investigated the clinical impact of EPC levels in peripheral blood stem cell (PBSC)
autografts for MM and NHL patients who received ASCT. EPC were identified by flow cytometry as aldehyde
dehydrogenasehi CD34þ vascular endothelial growth factor receptor 2þ CD133þ cells in both MM and NHL
autografts. In MM, there was a positive correlation between EPC percentage and serum (s)-b2-microglobulin
levels (r2 ¼ .371, P ¼ .002). Unlike for NHL patients, MM patients with high numbers of infused EPC (EPC cells
per kilogram) during ASCT had significant shorter progression-free survival (PFS) (P ¼ .035), overall survival
(P ¼ .044) and time to next treatment (P ¼ .009). In multivariate analysis, EPC cells per kilogram was a sig-
nificant independent negative prognostic indicator of PFS (P ¼ .03). In conclusion, the presence of high
number of EPC in PBSC grafts is associated with adverse prognosis after ASCT in MM.

� 2015 American Society for Blood and Marrow Transplantation.
INTRODUCTION
Multiple myeloma (MM) is a malignant disorder charac-

terized by clonal expansion of postgerminal-center malig-
nant B cells in the bone marrow [1-3]. High-dose
chemotherapy followed by autologous stem cell trans-
plantation (ASCT) is considered the standard first-line ther-
apy for patients <65 years of age [4]. Survival ranges from a
few months to more than 20 years, and several prognostic
indicators have been established. Median progression-free
survival (PFS) for patients who achieve a complete
response (CR) after ASCT is significantly longer compared
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with non-CR patients [5]. Moreover, high-risk patients with
t(4;14) or del(17p) have a poor prognosis after ASCT [6-9].
These patients may actually achieve CR, although at a lower
rate, but early relapses are more common [6]. For stratifica-
tion of MM patients at time of diagnosis, the International
Staging System (ISS) is a simple and reliable tool that
includes b2-microglobulin and albumin [10]. Prognostic in-
dicators and biomarkers are useful and have additive value
when they also give insight into biological mechanisms.

Disease progression in MM is accompanied by an increase
of bone marrow angiogenesis [11,12]. High level of vascular
endothelial growth factor (VEGF) levels in peripheral blood
from MM patients has been reported to be associated with
more advanced disease, and levels of VEGF in bone marrow
specimens correlate with b2-microglobulin levels [13].
Myeloma cells have no or only weak expression of VEGF
receptor (VEGFR) 1 and 2. However, VEGF-A stimulation of
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stromal and microvascular endothelial cells has been shown
to increase secretion of IL-6, a potent growth and survival
factor for myeloma cells [14]. Accordingly, high levels of IL-6
are associated with adverse prognosis in MM [15].

Endothelial progenitor cells (EPC) were first characterized
by Asahara in 1997 based on coexpression of the surface
markers VEGFR2 and CD34 [16]. Later studies have
confirmed that EPC express CD34 [17,18], VEGFR2 [18-20],
and also CD133 [18,19,21]. Primitive hematopoietic progen-
itor cells from bone marrow and umbilical cord blood ex-
press high levels of cytoplasmic aldehyde dehydrogenase
(ALDH) as compared to lymphocytes and monocytes [22].
Furthermore, a fluorescent substrate of ALDH (Aldefluor,
Stem Cell Technologies, Manchester, United Kingdom) can be
used to identify cells with increased ALDH activity [23].
Hence, an interesting strategy would be to identify EPC ac-
cording to a conserved stem cell function (ALDHhi) combined
with phenotypic markers.

Based on previous studies documenting the importance
of angiogenesis in MM, we hypothesized that levels of
EPC in stem cell grafts would be associated with clinical
outcome after ASCT. The aim of the present study was
to explore this by investigating the presence of
ALDHhiCD34þVEGFR2þCD133þ EPC by flow cytometry
technology in autologous peripheral blood stem cell
(PBSC) grafts from patients with MM and from patients
with non-Hodgkin lymphoma (NHL) as a comparison.

MATERIAL AND METHODS
Patients

Forty-one patients (MM; n ¼ 24, NHL; n ¼ 17) with available cry-
opreserved PBSC autograft samples collected in the period between 1995
and 2006 were included in this study. MM patients received induction
therapy with either vincristine 1.6 mg/m2, doxorubicin 36 mg/m2, and
dexamethasone 40 mg (VAD) or cyclophosphamide 1000 mg/m2 and
dexamethasone 40 mg (Cy-Dex) as previously described [24]. PBSC harvest
was performed after 1 cycle of cyclophosphamide (2 g/m2) followed by fil-
grastim. MM patients received melphalan (200 mg/m2) conditioning before
transplantation [24]. NHL induction therapy and mobilization of PBSC are
described in Supplemental Materials. The study was approved by Regional
Committee for Medical Research Ethics (REK-Nord 2011/724).

PBSC Collection and Cryopreservation
PBSC were collected on a Cobe Spectra Apheresis Instrument (Cobe

Laboratories, Gloucester, UK). Cells were subsequently treated to a con-
centration of 100 to 200 � 106/mL and mixed with dimethyl sulfoxide
(DMSO) to a final concentration of 10% DMSO before freezing in the gas
phase of liquid nitrogen. Small aliquots of 1 mL PBSC from all patients were
used in this study.

Reagents and Antibodies
Quantification of EPC

Human IgG, reagent grade I4506 was from Sigma-Aldrich (Saint Louis,
MO). Aldefluor was from StemCell Technologies. Antihuman VEGFR2-PE
(clone 89106) was from R&D (Abingdon, United Kingdom). Antihuman
CD34-PE-Cy7 (clone 8G12) was from BD Biosciences (San Jose, CA), anti-
human CD133-APC (clone AC133) was fromMiltenyi Biotec (Lund, Sweden).

Viability analysis
Antihuman CD34-PE (clone 8G12) and via-probe (7AAD) was from BD

Biosciences and antihuman CD45 FITC (clone T29/33) was from Dako
(Glostrup, Denmark).

Quantification of clonal circulating plasma cells
Antihuman CD19-PE-Cy7 (clone J3-119) and antihuman CD38-APC

Alexa750 (clone LS198-4-3) was from Beckman Coulter (Brea, CA). Anti-
human CD20-Horizon V-450 (clone L27) and antihuman CD45-Horizon V-
500 (clone 2D1) was from BD Biosciences. Antihuman CD138-APC (clone
MI15), Kappa Light Chains-FITC, and Lambda Light Chains-PE (code number
FR481) were from Dako. CellFIX (catalog number 340181) was from BD
Biosciences. Permeabilization Medium (catalog number GAS002S-100) was
from Life Technology (Thermo Fisher Scientific, MA).
Analysis of EPC and Clonal Circulating Plasma Cells in Stem Cell Grafts
by Flow Cytometry

Cryopreserved PBSCwere thawed, washed in PBSwith .2% bovine serum
albumin (PBSA), and counted. To block Fc receptor binding, 5 � 106 cells
were incubated with 5 mg human IgG in 15 minutes at 4�C. Cells were then
washed, 400 mL Aldefluor assay buffer was added, and cells were incubated
with 5 mL/.61mg Aldefluor for 30 minutes at 37�C. Dieth-
ylaminobenzaldehyde, a specific ALDH inhibitor, was used as a negative
control, as previously described [25]. Cells were then washed, and 200 ml
Aldefluor Assay Buffer was added. Then, cells were costained with 10 mL
anti-VEGFR2-PE, 2.5 mL anti-CD34-PE-Cy7, and 10 mL anti-CD133-APC for 30
minutes at 4�C. In a separate tube, 3 � 106 cells in .2% PBSA were incubated
with 5 mL anti-CD45-FITC, 10 mL anti-CD34-PE, and 20 mL 7AAD. The cells
were then washed, resuspended in Aldefluor assay buffer or PBS, respec-
tively, and stored on ice protected from light until they were collected on a
FACSCanto flow cytometer (Becton Dickinson, Franklin Lakes, NJ). For
quantification of clonal circulating plasma cells (cPC), 5 � 106 cells were
incubated with 2.5 mL CD19-PE-Cy7, 2.5 mL CD20-Horizon V450, 5 mL CD38
APC-Alexa 700, 2.5 mL CD45-Horizon V500, and 10 mL CD138-APC for 20
minutes, dark in room temperature. The cells were then fixated, washed,
and resuspended before incubated with 10 mL kappa/lambda-FITC/PE and
100 mL permeabilizationmedium for 15minutes, dark, in room temperature.
The cells werewashed, resuspended in PBSA, and collected on a FACSCanto II
flow cytometer (Becton Dickinson). Flow cytometry data were analyzed
using FlowJo v7.6.5 (TreeStar, Inc., Ashland, OR).

Statistics, Definitions, and Endpoints
GraphPad Software (La Jolla, CA) was used to determine statistical sig-

nificance of difference between groups by applying unpaired t-test orMann-
Whitney test as described in figure legends. Survival curves were plotted
using Kaplan-Meyer method and comparisons were based on log-rank test
with a significance level of P < .05. For multivariate analyses, a Cox pro-
portional hazards model was performed with SPSS version 21 (IBM Corpo-
ration, NY). EPC percentage was defined as percentage of VEGFR2þCD133þ

cells in the CD34þ population. EPC cells per kilogramwas defined as a ratio of
EPC (percent of CD34þ population) as determined by flow cytometry mea-
surements, divided by number of stem cells infused during ASCT (CD34þ

cells � 106/kg). PFS was measured from PBSC collection to date of pro-
gression or death. Patients who had not progressed or relapsed were
censored on the last date they were known to be alive. Overall survival (OS)
was calculated from PBSC collection to date of death or last visit. Time to next
treatment (TNT) was defined as the time from collection of PBSC to the onset
of new chemotherapy or radiation therapy after ASCT [26]. Disease pro-
gression was defined according to International Myeloma Working Group
Response Criteria [27]. Data on immunofixation was not available. Hence,
near CR was defined as absence of detectable monoclonal component in the
blood and urine electrophoresis and <5% plasma cells in bone marrow. Very
good partial response was defined as a 90% or more decrease in the serum
monoclonal component level (or urine monoclonal component lower than
100 mg/24 hours in Bence-Jones MM). Partial responsewas defined as a 50%
to 89% decrease in the serummonoclonal component level or a 90% or more
decrease in urine monoclonal component [28,29].

RESULTS
Patient Characteristics

In this study, we included PBSC autograft samples from 24
MM patients and 17 NHL patients. The median age for the
MM cohort at ASCT was 55.3 years, and median observation
time after ASCT was 10.2 years. The MM patients’ charac-
teristics at onset of therapy are presented in more detail in
Table 1. The NHL patients’ characteristics at onset of therapy
are summarized in Supplemental Table S1 and Supplemental
Materials.

Identification of CD34þVEGFR2þCD133þ EPC Population
with High ALDH Activity in PBSC Grafts from NHL and
MM Patients

We aimed to characterize the frequencies of EPC in PBSC
autograft samples from NHL and MM patients by stem or
progenitor cell properties as determined by high activity of
intracellular ALDH, combined with surface expression of
CD34, VEGFR2, and CD133. The gating strategy is outlined in
Figure 1A. The cells with high ALDH activity accounted for an
average 4.33% and 3.06% in NHL and MM patient samples,
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respectively. Approximately 90% of the cells within the
ALDHhi population were CD34þ (Figure 1A). Furthermore,
back-gating analysis showed that the majority of
VEGFR2þCD133þ in the autografts also were CD34þALDHhi

(Figure 1B).
The median percentage of 7AADneg cells within an intact

cell gate was 83.2%, thus showing that the quality of the
patient samples was good. For all samples, only cells within
the live cell gate were included in the analysis. Within this
live cell gate, consisting of lymphocytes and monocytes, the
median percentage of CD45þCD34þ7AADneg cells was 93.5%
and, hence, limiting the issue of dead cells confounding the
results.

We found that CD34þVEGFR2þCD133þALDHhi EPC were
present in stem cell grafts from both NHL and MM patients,
but at highly variable frequencies, ranging from .02% to 7.56%
of CD34þ cells (Figure 1C). When comparing NHL and MM,
our analysis did not reveal any significant differences in the
percentage ALDHhi cells, CD34þ cells � 106/kg, EPC per-
centage, or EPC cells per kilogram (data not shown). MM
patients had no difference in OS, PFS, or TNT according to the
induction chemotherapy (VAD versus Cy-Dex). Furthermore,
no significant difference in the EPC percentage within the
MM cohort according to induction chemotherapy before
ASCT (VAD versus Cy-Dex) was found (data not shown).
Thus, variations in percentage of EPCs could not be explained
by diagnosis or type of chemotherapy treatment in this
cohort.

Number of EPC Reinfused during ASCT Predicted Adverse
Outcome in MM Patients

We observed that both MM and NHL patients had highly
variable frequencies of EPC in PBSC grafts (Figure 1C) and we
went on to analyze if levels of EPC were associated with
clinical outcomes. Clinical and flow cytometry data fromMM
patients with percentage of EPC higher or lower than the
cohort median are presented in Table 2. Survival analysis
showed that MM patients with EPC percentage higher than
Table 1
MM Patient Characteristics at Onset of Therapy

ID Sex Age PC, % s-IgA, g/L s-IgG, g/L s-b2-M, mg/L s-Alb

3 M 59 41 .2 42.4 9.80 35.8
4 M 56 10 .9 41.8 1.60 36.2
5 M 52 23 32.5 1.7 2.40 45.8
6 M 56 34 .9 38.6 1.50 33.4
7 F 53 71 33.5 4.3 17.60 30.2
8 M 60 13 .5 3.1 3.40 42.1
10 M 50 46 .1 85.5 5.30 34.6
12 F 63 19 .2 21.9 2.00 40.7
17 F 58 20 .6 9.1 7.28 46.2
20 F 65 22 .2 85.6 4.97 29.3
23 F 48 38 .2 48.6 3.39 31
25 F 59 - .8 10.3 1.47 42.1
26 F 54 68 33.7 3.0 1.95 41.4
28 M 60 15 .4 28.7 1.19 41.6
32 M 41 20 .7 69.8 2.61 35.3
36 F 57 28 .1 105.0 - 22.8
41 M 54 38 .9 9.4 9.31 45.1
42 M 56 7 .4 5.3 1.85 47.7
46 M 49 70 .0 1.7 1.98 44.8
47 M 50 70 .4 106.7 3.84 22.5
48 M 55 1 1.0 13.3 9.60 33.7
49 M 53 72 .1 72.1 5.06 29
52 F 49 1 1.2 9.4 1.20 39.8
54 M 56 20 15.4 6.0 1.50 40.2

ID indicates patient identity number; PC, plasma cells in bone marrow; s-b2-M, s
s-Hb, s-hemoglobin; M, male; F, female.
cohort median had significant shorter TNT (P ¼ .023) but not
PFS or OS (Supplemental Figure 1A). In contrast, no trend
towards adverse clinical outcome for NHL patients with high
EPC percentage in PBSC grafts was observed (not shown).

We then hypothesized that the actual amount of EPC per
kilogram infused during ASCT, termed EPC cells per kilogram,
might be an even stronger predictor for outcome than per-
centage EPC in the MM cohort. EPC cells per kilogram ranged
from .02 to 2.37, with a median of .24 (Figure 2A). Survival
analysis showed that MM patients with higher than cohort
median EPC cells per kilogram had shorter PFS (P ¼ .035)
(Figure 2B) and OS (P ¼ .044) (Figure 2C), and also significant
shorter TNT (P ¼ .009) (Supplemental Figure 1B).

In MM, EPC cells per kilogram was a significant inde-
pendent negative prognostic indicator for PFS by multivar-
iate analyses (hazard ratio, 3.44; P ¼ .03) (Table 3). Only
variables with significant P values from univariate analyses
were entered into the multivariate analysis, using the Cox
proportional hazards model (backward stepwise, probability
for stepwise entry and removal was set at .05 and .10). P
values < .05 were considered statistically significant.

In conclusion, a high number of EPC infused (EPC cells per
kilogram) during ASCT was found to be a negative prognostic
factor for PFS, OS, and TNT in MM patients.

EPC Level in Stem Cell Grafts was Associated with
Increased Pre-treatment s-b2-microglobulin but not ISS
Score in the MM Cohort

We found a significant positive correlation between EPC
percentage in PBSC grafts and the level of s-b2-microglobulin
at baseline (Figure 3) (r2 ¼ .371, P ¼ .002). In contrast, there
were no associations between EPC percentage and the levels
of s-albumin or s-LD (elevated versus normal) (data not
shown). We found no associations between high numbers of
EPC and the percentage of plasma cells in bone marrow at
time of diagnosis or before ASCT, r2 ¼ .0097 and r2 ¼ .0121,
respectively. MM patients with ISS I (n ¼ 12) had significant
longer OS but not PFS after ASCTcomparedwithMMpatients
, g/L s-LD Above Normal s-Hb, g/dL Initial Therapy cPC%

- 13.4 Cy-Dex .001953
No 11.6 Cy-Dex .000015
No 11.5 Cy-Dex .000415
No 12.5 Cy-Dex .000083
Yes 9.7 Cy-Dex .000049
No 11.7 VAD .000779
Yes 8.1 VAD .000236
No 10.8 VAD .000050
Yes 9.1 VAD .000063
Yes 9.2 VAD .000022
- 10 Cy-Dex .002392
No 13.1 VAD .000069
Yes 7.3 VAD .000275
Yes 9.9 VAD .000631
No 10 VAD .000122
No 8.2 VAD .000791
No 12.1 VAD .000030
No 12.2 VAD .000218
No 13.5 VAD .005969
No 9.1 VAD .000236
Yes 8.8 VAD .000158
No 9.7 VAD .000094
- 10.1 VAD .000080
No 12.2 VAD .000043

erum (s)-b2-microglobulin; s-Alb, s-albumin; LD, s-lactate dehydrogenase;



Figure 1. CD34þCD133þVEGFR2þ EPC can be identified within ALDHhi population in stem cell grafts from NHL and MM patients. (A) Flow cytometry analysis of EPC in
representative stem cell grafts from NHL and MM patients (ID 10, 39, 12, and 22). FSC/SSC gating was used to identify lymphocytes and monocytes, followed by gating
on ALDHhi cells in order to define cells with stem or progenitor characteristics. EPC were subsequent defined as triple positive CD34þVEGFR2þCD133þ cells (red
arrow). (B) Back-gating analysis of VEGFR2þCD133þcells shows that the majority of double positive VEGFR2þCD133þ fall within CD34 and ALDH gates. Represen-
tative sample from a MM patient (MM ID 07). (C) Bar chart illustrating distribution of EPC as percentage of CD34þ cells in stem cell grafts from patients treated with
ASCT. NHL (white bars) and MM (grey bars).
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Table 2
Clinical and Flow Cytometry Data from MM Patients with Percent EPC
Higher or Lower than Cohort Median

EPC Low
Group (mean)

EPC High
Group (mean)

Unpaired
t-Test P Value

Age 56.09 53.21 .18
PC (%) 27.75 34.50 .68
s-b2-M (mg/L) 2.79 5.61 .09
s-Alb (g/L) 37.05 37.23 .95
s-Hb (g/L) 10.55 10.60 .95
SR (mm/h) 50.67 68.75 .22
MFI CD133 2637 3718 .10
MFI VEGFR2 140.5 213.3 .09
CD34 � 106/kg 4.15 5.46 .26

SR indicates erythrocyte sedimentation rate; MFI, median fluorescence
intensity.
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ISS II and III (n ¼ 11) (P ¼ .019) (Figure 4A,B). However, we
found no differences in EPC percentage and EPC cells per
kilogram between the ISS I and II and III subgroups
(Supplemental Figure 2A,B). In summary, the percentage of
EPC in stem cell grafts was correlated with s-b2-micro-
glubulin levels at baseline in the MM cohort but not with
other relevant clinical prognostic parameters.

We also enumerated the number of cPC in the graft to
investigate a potential correlation between EPC and cPC.
Gating strategy is outlined in Supplemental Figure 3A. cPC
percentage indicates clonal cells as a percentage of cells
within a live lymphocyte-monocyte gate. We found highly
variable frequency of cPC in the MM graft, ranging from
.000015% to .005969% of live cells within lymphocyte-
monocyte gate (Table 1). There were no significant correla-
tion between EPC and cPC (P¼ .82, r2¼ .0023) (Supplemental
Figure 3B). MM patients with lower than cohort median of
cPC had trend towards better OS, PFS, and TNT (P¼ .0056, P¼
.084, P ¼ .098, respectively) compared with MM patients
with higher than cohortmedian of cPC, although this was not
statistical significant in this relatively small cohort
(Supplemental Figure 4A-C). EPC was still an independent
negative prognostic indicator for PFS in multivariate analysis
when cPC was included (hazard ratio, 3.44; P ¼ .027; 95%
confidence interval, 1.149 to 10.294).
Figure 2. The absolute number of EPC in stem cell grafts stratifies OS in MM
patients after high-dose chemotherapy with ASCT. (A) Bar chart illustrating the
estimated number of EPC infused to MM patients together with autologous
CD34þ stem cells during ASCT (n ¼ 24). EPC cells per kilogramwas defined as a
ratio of measured percentage EPC of CD34þ cells as determined by flow
cytometry analysis, divided by the total number of stem cells reinfused (CD34þ

cells � 106/kg). MM patients were divided into two groups depending on
whether the number of EPC cells per kilogramwas above or below the median
value for the cohort. (B) Progression-free survival after ASCT in MM patients
with higher or lower than cohort median EPC cells per kilogramwas compared
with Kaplan-Meyer plot with log-rank test and found to be significantly lower
in the group with EPC cells per kilogram higher than cohort median. (C) MM
patient OS after ASCT was compared with Kaplan-Meyer plot with log-rank
test and found to be significant lower in MM patients with EPC cells per
kilogram higher than cohort median.
DISCUSSION
Aberrant angiogenesis is one of the important hallmarks

in the multistep pathogenesis of MM disease progression
[30]. A central part in the complex process of malignant
angiogenesis is recruitment of VEGFR2þ EPC and VEGFR1þ

hematopoietic precursor cells from bone marrow [20].
However, the exact role of EPC in MM disease progression
and clinical outcome is not yet clearly understood. In the
present study, we determined the levels of EPC in PBSC
autograft samples and demonstrated that MM patients with
a high load of EPC in grafts had adverse PFS and OS after
ASCT. Of note, EPC cells per kilogram was a significant in-
dependent negative prognostic indicator of PFS also in
multivariate analysis.

We demonstrated that EPC could be detected in autolo-
gous stem cell grafts from NHL and MM patients at variable
frequencies. However, we found no differences in EPC fre-
quencies between NHL and MM patient samples, although
stem cells grafts were mobilized with different protocols in
the 2 cohorts. This is in line with previous work showing that
there was no significant difference in EPC levels between
MM and NHL after mobilization to peripheral blood by
cyclophosphamide and granulocyte colonyestimulating
factor [31]. Unlike for MM, we could not observe any trends
towards worse outcome in NHL patients with high levels of
EPC. Accordingly, the role of angiogenesis in diffuse large B
cell lymphoma measured by microvessel density has shown
different results in regard to clinical outcome [32,33]. MM
cells grow and expand almost exclusively in the bone
marrow [34], and both osteoblastic and vascular niches can
support the proliferation of MM cells [35]. This emphasizes



Table 3
Results of Cox Regression Analysis Summarizing Significant Independent
Prognostic Factors

Factor Hazard Ratio 95% CI P Value

EPC (cells/kg)
Low 1
High 3.44 1.15-10.29 .03

Induction chemotherapy
CR/VGPR 1
PR/SD 7.90 1.71-36.40 .008

Response after ASCT
CR/VGPR 1
PR/SD 3.75 1.24-11.29 .02

CI indicates confidence interval; EPC, endothelial progenitor cells; CR,
complete response; VGPR, very good partial response; PR, partial response;
SD, stable disease; ASCT, autologous stem cell transplantation.
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bone marrow angiogenesis as an attractive target for treat-
ment of MM. Patients with relapsed or refractory MM,
including patients after ASCT, have significantly improved OS
after treatment with lenalidomide [36]. Maintenance ther-
apy with lenalidomide after ASCT increases PFS [37] and OS
[38]. Lenalidomide has diverse mechanisms of action and
affects angiogenesis, immune cells, and tumor cells, although
the relative impact in different cell types is still unclear
[39,40]. However, as VEGFR2 on MM endothelial cells can be
targeted by lenalidomide resulting in impaired VEGFR2 and
ERK signaling, which is involved in migration and tubular-
like formation of endothelial cells [41], it would be of inter-
est to study whether levels of EPC in PBSC grafts could
predict response to lenalidomide and other antiangiogenic
therapies in MM. Furthermore, it has previously been
demonstrated that functional inactivation of VEGFR2 by the
monoclonal antibody anti-VEGFR2 (DC101) stopped ongoing
angiogenesis and tumor cell invasion [42].

Recently, a phase 3 trial with monoclonal antibody
VEGFR2 antagonist demonstrated clinical efficacy with
improved OS in patients with advanced gastric cancer [43].
However, the results of a phase 3 trial in breast cancer pa-
tients have been disappointing [44]. Therefore, a clinical trial
investigating the incorporation of a monoclonal antibody
Figure 3. Positive correlation between s-b2-microglobulin and the percentage
of EPC in stem cell grafts from MM patients. Scatter plot of EPC as percentage
of CD34þ cells in stem cell grafts as determined by flow cytometry versus s-b2-
microglobulin (mg/L) in MM patients at onset of treatment (n ¼ 23). Associ-
ation between variables was evaluated by Pearson R2.
against VEGFR2 in combination with lenalidomide as an
augmented maintenance in patients with high load of EPC in
stem cell grafts would be of interest.

Of importance, we found a correlation between EPC in
stem cell grafts and s-b2-microglobulin. In MM, b2-
microglobulin is an important prognostic factor [45-47].
The association between the levels of EPC in stem cell grafts
and b2-microglobulin in peripheral blood at time of diag-
nosis are concordant with previous studies in MM, which
have reported a correlation between b2-microglobulin and
circulating endothelial cells [48] or circulating EPC [49]. The
association between b2-microglobulin and EPC highlights
the unsolved question whether levels of EPC in stem cell
grafts has a direct effect on relapse or purely acts as a sur-
rogate marker. The correlation between b2-microglobulin
before treatment and EPC in the graft could indicate that
MM patients with high tumor load at baseline mobilize more
EPC together with PBSC. The presence of cPC cells has been
shown to be associated with adverse outcome in MM after
ASCT [50,51]. A possible mechanism for EPC mobilization
could be presence of cPC. However, we found no correlation
between EPC and cPC in this MM cohort. Previously, purging
of stem cell graft by CD34 selection has no beneficial impact
on long-term outcome in MM [52,53]. Nevertheless, actively
purging of EPC in stem cell grafts would be an interesting
strategy in future protocols.

In the present study, we defined EPC as progenitor cells
with high intracellular ALDH expression combined with the
phenotypic surface markers CD34, CD133, and VEGFR2.
Figure 4. ISS stratifies OS in MM patients after ASCT. OS (A) and PFS (B) for
patients MM patients after ASCT according to ISS I (n ¼ 12) compared with
ISS II or III (n ¼ 11). Kaplan-Meyer plot with log-rank test. Significance level of
P < .05.
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Although the properties of EPC to differentiate into mature
endothelial cells in vitro and to contribute to vessel for-
mation after transplantation was described more than a
decade ago [16], no consensus has been reached regarding a
uniform definition of EPC. EPC characterized as
CD34þCD133þVEGFR2þ has previously been identified in
NHL and MM [31], non-small cell lung cancer [54,55],
myelofibrosis with myeloid metaplasia [56], and glioma
[57]. However, whether CD34þVEGFR2þCD133þ cells have
angiogenic or hematopoietic capacities is controversial [58].
These markers are also demonstrated to be expressed on
hematopoietic stem and progenitor cells, making it difficult
to distinguish between endothelial and hematopoietic pro-
genitors [59,60]. Furthermore, ALDHhiCD133þ cells have
ability of multilineage reconstitution and possessed long-
term repopulating ability in secondary murine recipients
[61]. Therefore, high ALDH activity is a functional marker of
both hematopoietic and nonhematopoietic bone marrow
derived progenitor cells [62]. Recently, EPC has been char-
acterized solely as ALDHhi or as CD34þCD133þ cells [63].

Although the present study included a limited number of
MM patients, we found a significant correlation between
increased levels of ALDHhiCD34þVEGFR2þCD133þ EPC in
stem cell grafts and adverse clinical outcome after ASCT. Of
note, the actual number of EPC infused was shown to be an
independent risk factor. Although this is a retrospective
study and the results have to be confirmed by prospective
studies with a predefined plan for analyses in MM patient
cohorts treated with novel agents such as thalidomide,
lenalidomide, and bortezomib, the significant adverse
outcome in a limited patient cohort indicates an evident
difference caused by EPC. We conclude that further studies
are warranted to confirm whether the EPCs in the stem cells
grafts facilitate relapse by direct action or serve as a surro-
gate marker for outcome.
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